
CxSOM
Hervé Frezza-Buet

Herve.Frezza-Buet@centralesupelec.fr

Contents

1 Introduction 2

2 The model 2

2.1 Data instances (DI) . 2

2.2 Updates . 3

2.2.1 An update is a function taking arguments and computing a result 3

2.2.2 Time steps . 3

2.2.3 Datation and relaxation . 4

2.2.4 Update computation cycle . 4

2.3 Timesteps and tasks . 6

2.3.1 A computational structure for timesteps . 6

2.3.2 Timestep status . 6

2.3.3 Timestep update queues . 6

2.3.4 Providing jobs . 7

2.3.5 The timestep state machine . 7

2.3.6 Update patterns . 7

2.4 Simulation . 9

3 Available update functions 9

3.1 Initializations . 9

3.2 Matching a value against weights . 9

3.3 Merging activities . 11

3.4 Learning . 11

3.5 BMU computation . 11

4 Implementation 12

1

mailto:Herve.Frezza-Buet@centralesupelec.fr

4.1 Variables . 12

1 Introduction

The CxSOM software suite enables to model consensus based multi-SOMs, explored in the BISCUIT
team of the Loria lab.

The current documentation is at work, and mainly technical stuff are reported here. See the
README at the package root for an introduction, as well as examples.

2 The model

The computation enabled by CxSOM consists of successively updating data, keeping trace of the
data values in history files.

2.1 Data instances (DI)

The elementary piece of data handled in CxSOM is called a data instance (DI). Each of the computed
DIs ends as a record in a file, once it has been computed.

DIs are denoted by a triplet [T, X, t], that reads as “the instance of variable X hosted by the
timeline T at the time instant t of that specific timeline”. Only elementary [T, X, t] DIs matter,
the concepts of variable, timeline and time instant only serve for describing the computation.

Each DIs is a value that is stored in a file once definitively computed. A value has a type, that
can be:

• Scalar: A floating point value, usually in [0, 1].

• Pos1D: A value in [0, 1] corresponding to a position in a 1D map.

• Pos2D: A value in [0, 1]2 corresponding to a position in a 2D map.

• Array=n: A value in Rn, usually [0, 1]
n
, n ∈ N⋆.

• Map1D<X>=n: A 1D map of type X , i.e. a value in Xn, n ∈ N⋆.

• Map2D<X>=n: A 2D squared map of type X , i.e. a value in (Xn)
n
, n ∈ N⋆.

where type X ∈ {Scalar, Pos1D, Pos2D, Array=k}.

In CxSOM, the type is associated to a variable, i.e. all the [T, X, •] are DIs with the same type.

Every DI is also doted with a status variable ⟨[T, X, t]⟩ ∈ {busy, ready}:

• ready: The computation of the value of the DI is definitively done. The DI value will not
change anymore.

• busy: The definitive value of the DI is still to be determined.

More generally, in the following, ⟨x⟩ reads as “the status of x”.

2

2.2 Updates

An update of some DI is the (re)computation by the CxSOM computer of the value of that DI. There
are at most two updates for a DI, one for the first update (initialization) that is optional, and one,
mandatory, for other updates.

2.2.1 An update is a function taking arguments and computing a result

An update u for a DI [T, X, t] is made of:

• The decription of some computation, i.e. the function called to realize an update.

• The result resu, i.e. resu
def
= [T, X, t] itself, that is computed by the function of the update.

• Other DIs, thats serve as arguments to the function (their value is read when the function is
called). Among arguments, a distinction is made between in-arguments and out-arguments:

– The in-arguments inu of the update u such as resu = [T, X, t] is the set of DIs used as
arguments of u of the form [T, •, t]. All the DIs handled in the simulation of the form
[T, •, t] define a time step StT of the simulation, so the in-arguments are the DIs used
for the computation of an update which belong to the same timestep as the result.

– The out-arguments outu of the update u are the other DIs used as arguments for the
computation of the update.

2.2.2 Time steps

As just introduced in the previous section, let us call a time step all the DIs [T, •, t]. So a time
step is only parametrized by a timeline T and an instant t, thus denoted by StT .

As detailed in next paragraph, all the DIs in a timestep will be updated several times until they
reach some kind of consensus on the final values of the DIs.

Let us denote all the updates defined for a timestep by

U t
T

def
=
{
u
∣∣ resu ∈ StT}.

Let us denote by

Ot
T

def
=
{
[T ′, X ′, t′]

∣∣ ∃u ∈ U t
T , [T

′, X ′, t′] ∈ outu
}

the set of their out-arguments. One immediate condition for activating the computation related
to some timestep StT is to have ∀[T ′, X ′, t′] ∈ Ot

T , ⟨[T ′, X ′, t′]⟩ = ready.

Another condition is less obvious. Indeed, there may be some in-arguments in a timestep for
which no update are defined. Such arguments need to be set externally, they are typically inputs
provided to our simulation. Let us call them unbound DIs of a timestep StT , and denote them by

F t
T

def
= StT \ {resu | u ∈ U t

T }. The second condition for activating the computation related to some
timestep StT is then to have ∀[T, X ′, t] ∈ F t

T , ⟨[T, X ′, t]⟩ = ready.

So once we have(
∀[T ′, X ′, t′] ∈ Ot

T , ⟨[T ′, X ′, t′]⟩ = ready
)
∧
(
∀[T, X ′, t] ∈ F t

T , ⟨[T, X ′, t]⟩ = ready
)

the computation of the DIs of a time step StT which are still ready can be processed. This is the
relaxation of the timestep.

3

2.2.3 Datation and relaxation

Before it has a definitive value (i.e. before being in the ready status), the value of a DI may
change several times. Indeed, all DIs in a timestep StT = [T, •, t] are updated until all of them get
ready, and during that process, the values of the DIs may be recomputed several times. In order
to handle the dependancies of the DIs within a timestep, we need to timestamp the values of the
DIs, in order to determine those of them that have to be updated. Timestamp play the role of file
dates in makefile, when the date of a target is compared to the date of its dependancies. Here, in
order to know if an update u needs to be performed, we have to consider two things:

• Do we have ∀[T, X, t] ∈ outu, ⟨[T, X, t]⟩ = ready? If not, the update cannot be done, it is
considered as impossible.

• Have the in-arguments been updated since the last computation of the result? If the answer
is yes, the result needs to be recomputed.

To compute the second conditon, every DI comes with a datation denoted by d[T, X, t] ∈ N.

An update then stores, for each of its in-arguments, the datation it had at the last computation
of the result. When the simuator considers an update, it compares the current datation of the
in-arguments to the ones stored by the update. If some are newer (or if the result has never been
computed so far) the result is recomputed, and

dresu = 1 + max
[T, X, t]∈inu

d[T, X, t] (1)

Considering an update for computation can thus lead to the following status of the update u,
denoted by ⟨u⟩:

• ⟨u⟩ = impossible: ⟨resu⟩ = busy, computation is not feasible yet, since some out-arguments
are busy.

• ⟨u⟩ = uptodate: ⟨resu⟩ = busy, nothing changed in the in-arguments input dates from last
update, or the new value was not a significant modification. The datation dresu has not been
modified.

• ⟨u⟩ = updated: ⟨resu⟩ = busy, the computation has modified the value of resu significantly.

• ⟨u⟩ = done: ⟨resu⟩ = ready, the computation has modified the value resu definitively.

• ⟨u⟩ = none: Update status is not determined yet (used for initialization only).

The datation mechanism enables to control the update of all the DIs in a given timestep, i.e. all
the DIs like [T, •, t] for the time instant t of the timeline T . When no more significant writes of
the results can be done, the whole timestep is stable. So the relevance of the datation mechanism
is to enable a relaxation of the DIs inside a timestep until stabilization of all of them is reached.

2.2.4 Update computation cycle

When a specific update is defined in CxSOM (as average, learning, etc.), the update is inherited
from a base cxsom::update::Base class. In the subclass, the specificity of the computation has to
be implemented, while the base class handles the details of the full update cycle, as datation and
status. Algorithm 1 shows the cycle, the on * calls are the method that subclass need to override
in order to implement a specific update computation.

4

Algorithm 1 One update cycle for update u

Require: a boolean attribute out ok, telling if all out-args have been read successfully previously.
Require: a boolean attribute is init, telling if the update is an initialization.
1: if ⟨resu⟩ = ready then
2: return done

3: end if
4: on computation start()
5: if ¬out ok then
6: // out-arguments need to be read.

7: for all [T, X, t] ∈ outu do
8: if ⟨[T, X, t]⟩ = ready then
9: on read out arg([T, X, t])

10: else
11: out ok← false
12: on read out arg aborted()
13: return impossible

14: end if
15: end for
16: out ok← true // All in-args have been successfully read.

17: end if
18: for all [T, X, t] ∈ inu do
19: // Datation issues are handled in this loop, but not detailed here.

20: on read in arg([T, X, t])
21: end for
22: if none of the in-arguments have been updated since last cycle then
23: if is init then
24: return updated // updates used as initialization are never considered as up-to-date.

25: else
26: return uptodate

27: end if
28: end if
29: // From here, we know that the result has to be recomputed.

30: x← none // This is the status we plan to return, it is set next.

31: α← on write result(resu) // α is a Boolean telling if the value change is significant.

32: if we have just written a new significant value in resu then
33: x← updated

34: else
35: if is init then
36: return x ← updated // Even not significant changes are considered as an actual update for

initialization updates.

37: else
38: return x← uptodate

39: end if
40: end if
41: // Before returning, we have to check if in-arg may change in the future

42: if all in-arguments are ready then
43: if is init then
44: x ← updated // As u an init, we return updated since further change can be consider by the

usual update comming next for updating resu.

45: else
46: x← done // We have definitively computed the result...

47: ⟨resu⟩ ← ready // The result DI value is locked.

48: end if
49: end if
50: return x

5

2.3 Timesteps and tasks

2.3.1 A computational structure for timesteps

In the simulator, the computation of the updates are put in a pool task and computed in parallel.
However, since relaxation is related to the computation of updates belonging to the same timestep,
this task management needs an intermediate level, which is a computational internal structure
representing the timesteps.

Let us recall the notation StT
def
= {[T ′, X ′, t′] ∈ simulation | T ′ = T ∧ t′ = t} for the timestep at

instant t in the timeline T . For each [T, X, t] ∈ StT , the internal structure used in the simulator
gathers at least an usual update, and an optional initialization update. The initialization update, if
present, is used for the first feasible setting of the value of [T, X, t] instead of the ususal update.
Otherwise, the usual update is used throughout the successive setting of the value of [T, X, t]
during the relaxation.

In order to avoid further confusions, let us denote by u an update handled by a time step StT :
it can be either a single update u (so u is the usual update) or a pair (u, u′) if an initialization
update is defined (then u′ is the initialization update). In the case for which u = (u, u′) is a pair,
resu = resu′ obviously stands. In the case of a pair as well, the simulator uses u′ until it gets a
first computation of resu, and then it will switch to the use of u for next computations of resu.

As at least a call to the usual update u is required to be done for u, we have particularized the
status returned by initialization updates in algorithm 1, so that the evaluation of an initialization
update can never lead to the definitive computation of resu during the relaxation of the timestep.

2.3.2 Timestep status

The timestep structures StT at the simulator level have a status〈
StT
〉
∈ {unbound, blocked, relaxing, checking, done}.

The status ⟨StT ⟩ depends on the status of the updates of the timestep, observed when the updates
are realized. The meaning of the ⟨StT ⟩ is:

• ⟨StT ⟩ = unbound: The timestep as unbound DIs, i.e. F t
T ̸= ∅.

• ⟨StT ⟩ = blocked: The timestep is blocked due to impossible updates.

• ⟨StT ⟩ = relaxing: The timestep is under unstable computation.

• ⟨StT ⟩ = checking: Every update seem stable, we are checking this.

• ⟨StT ⟩ = done: The timestep is done, all updates u have lead to resu = ready and have quit
the simulator.

2.3.3 Timestep update queues

The timestep structures StT at the simulator level are doted each with 5 update queues, where the
updates u are stored. Each the u ∈ StT belongs to one of the 5 queues of StT .

When a timestep is asked by the simulator to provide computation, it extracts updates from some
of the queues. When the update is performed by the simulator, it is given back to the timestep,
with the return status resulting from algorithm 1. According to this status, the update is stored in
the appropriate queue, and some supplementary transfers from one queue to another queue may
happen. This will be detailed further, as the timestep state machine.

6

For now, let us present the 5 queues used by a timestep StT .

[StT]new : {u ∈ StT | ⟨u⟩ Newly added to the queue.}
[StT]unstable : {u ∈ StT | ⟨u⟩ needs to be known.}
[StT]impossible : {u ∈ StT | ⟨u⟩ has been detected as impossible}
[StT]stable : {u ∈ StT | u have been seen stable for the first time are here.}
[StT]confirmed : {u ∈ StT | u for which stability is confirmed.}

2.3.4 Providing jobs

A timestep is periodically asked by the simulator to provide tasks, i.e. to offer updates that will be
evaluated by the simulator. These updates are extracted from the timestep and inserted in a pool
task, waiting for execution. The timestep keeps trace of their existency while they are outside,
waiting for their execution.

So when a timestep StT is asked for new updates to be done, it provides (and extracts) :

• all the u ∈ [StT]unstable ∪ [StT]stable if ⟨u⟩ ∈ {relaxing, checking}

• nothing otherwise.

2.3.5 The timestep state machine

When an update is executed, it is given back to the timestep by the simulator, with a status report
given by algorithm 1.

The reporting of an update makes the update to be inserted in a queue of the timesteps. This is
done as detailed in algorithm 2.

Algorithm 2 Reporting update u to the timestep StT
Require: ⟨u⟩ is the status of the update execution.
Require: ⟨StT ⟩ is the current status of the timestep.
1: if ⟨u⟩ = impossible then
2: [StT]impossible ← [StT]impossible ∪ {u}
3: else if ⟨u⟩ = updated then
4: [StT]unstable ← [StT]unstable ∪ {u}
5: else if ⟨u⟩ = done then
6: // The update is not handled anymore, since ⟨resu⟩ = ready.

7: else if ⟨u⟩ = uptodate then
8: if ⟨StT ⟩ = checking and u was in [StT]stable then
9: [StT]confirmed ← [StT]confirmed ∪ {u}

10: else
11: [StT]stable ← [StT]stable ∪ {u}
12: end if
13: end if
14: update status(StT) // See algorithm 3.

2.3.6 Update patterns

Defining an update for all DIs (i.e. at each time t) would be exhausting. It can be done for specific
time instants (usually t = 0), but a generic update definition is required for the general cases.

7

Algorithm 3 update status(StT)
1: if has unbound(StT) then
2: ⟨StT ⟩ ← unbound // See algorithm 4.

3: else if [StT]impossible ̸= ∅ then
4: [StT]stable ← [StT]stable ∪ [StT]confirmed
5: [StT]confirmed ← ∅ // Blocking out-arguments lead to reconsider the St

T stability.

6: if all the out-arguments of the u ∈ StT are ready then
7: [StT]unstable ← [StT]unstable ∪ [StT]impossible

8: [StT]impossible ← ∅ // Impossible updates become instable, i.e. evaluable.

9: ⟨StT ⟩ ← relaxing

10: else
11: ⟨StT ⟩ ← blocked

12: // At this level, the simulator consider the timesteps St′
T ′ owning busy out-arguments as blockers

of St
T .

13: end if
14: else if [StT]unstable ̸= ∅ then
15: //

[
St
T

]
impossible

= ∅
16: [StT]stable ← [StT]stable ∪ [StT]confirmed
17: [StT]confirmed ← ∅ // A single unstable argument leads to reconsider the St

T stability.

18: ⟨StT ⟩ ← relaxing

19: else if [StT]stable ̸= ∅ then
20: //

[
St
T

]
impossible

= ∅,
[
St
T

]
unstable

= ∅
21: ⟨StT ⟩ ← checking // St

T updates are all stable, stability confirmation is in progress.

22: else
23: //

[
St
T

]
impossible

= ∅,
[
St
T

]
unstable

= ∅,
[
St
T

]
stable

= ∅
24: // Every update stability is confirmed. We can set all the results as ready

25: for all u ∈ [StT]confirmed do
26: ⟨resu⟩ ← ready

27: end for
28: ⟨StT ⟩ ← done

29: for all St′T ′ for which StT is a blocker do

30: update status
(
St′T ′

)
31: end for
32: end if

Algorithm 4 has unbound(StT)
1: // The readyness of the DIs that are unbound in-arguments of some update in the

[
St
T

]
new

queue are

checked. If the update has no busy unbound in-arguments, it is moved into the
[
St
T

]
unstable

queue.

2: return F t
T ̸= ∅

8

This is what update patterns (UP) are introduced for. Let us denote a relative data instance (RDI)
as {T, X, τ}, where τ ∈ Z is a relative time shift. A RDI can be anchored as a DI at time t. This
consists in turning {T, X, τ} into [T, X, t+ τ].

We also consider RDI with a relative time factor, rather than a time shift. No difference is made
here, in terms of notations, between the two. Such a RDI is anchored as a DI at time t by turning
{T, X, τ} into [T, X, t× τ].

The definition is then similar to the one of an update, presented in section 2.2.1. An UP π is made
of:

• The decription of some computation, i.e. the function called to realize an update.

• The result resπ, which is a zero-shift DRI {T, X, 0}.

• Other RDIs or DIs, thats serve as arguments to the function.

Anchoring an UP π such as resπ = {T, X, 0} at time t consists in defining an update by anchoring
the result and all the arguments which are RDIs, in order to get a regular update for [T, X, t].

2.4 Simulation

The simulator compute DIs. It does it by asking tasks to its active timesteps, as explained in
section 2.3.4. When it is out of work, it tries to generate more DIs to compute by anchoring
available UPs, thus creating new active timesteps. This is described in algorithm 5.

3 Available update functions

3.1 Initializations

This sets the variable X so that each of the float it contains is 3.14, Y so that each of the float it
contains is a random value in [0, 1[, Z as a copy of X.

"X" << fx::clear () | kwd::use("value", 3.14);

"Y" << fx:: random ();

"Z" << fx::copy("X");

3.2 Matching a value against weights

In SOM-like computation, an input ξ is given and is matched against all the weights wi in the
map. The result is an activity vector, its elements ai are in [0, 1], corresponding to each weight,
that is 1 if the weight and the input perfectly match.

The formula is, for a map of weights wi and an input ai, ∀i, ai = µ(ξ, wi). Two matching functions
are defined, a triangle matching µ△ and a Gaussian matching µG.

µG(ξ, w)
def
= exp

(
(ξ − w)

2

2σ2

)
µ△(ξ, w)

def
= max

(
1− |ξ − w|

r
, 0

)

9

Algorithm 5 get one job()

Require: A task queue (jobs) denoted by J , used and updated by the algorithm.
1: if J = ∅ then
2: // Let us try to fill the task queue J .

3: for all StT which are handled currently do
4: // We check for eventual unbound DIs

5: if has unbound(StT) then
6: ⟨StT ⟩ ← unbound // See algorithm 4.

7: end if
8: if ⟨StT ⟩ ∈ {relaxing, checking} then
9: push

(
J , [StT]unstable ∪ [StT]stable

)
// see section 2.3.4

10: end if
11: end for
12: if J = ∅ then
13: // No active patterns are able to provide new jobs.

14: // We create new timesteps by anchoring the UPs.

15: anchor UPs() // See algorithm 6.

16: // We may have new St
T s, let us retry to ask them jobs.

17: for all StT which are handled currently do
18: // We check for eventual unbound DIs

19: if has unbound(StT) then
20: ⟨StT ⟩ ← unbound // See algorithm 4.

21: end if
22: if ⟨StT ⟩ ∈ {relaxing, checking} then
23: push

(
J , [StT]unstable ∪ [StT]stable

)
// see section 2.3.4

24: end if
25: end for
26: end if
27: end if
28: if J = ∅ then
29: return // There is really no way to get a new job.

30: else
31: j ← pop(J)
32: return j // That job will be done.

33: end if

Algorithm 6 anchor UPs()

Require: The set of defined UPs is referred to as P.
1: Determine the used variables V def

= {(T,X) | π ∈ P ∧ resπ = {T, X, τ}}.
2: For each timeline T mentionned in V, compute @T as the first time instant for which a variable

(T,X) ∈ V is busy (i.e. not computed so far).
3: for all π ∈ P do
4: Consider {T, X, 0} = resπ
5: if ⟨[T, X, @T]⟩ = busy then
6: Anchor π at time instant @T , thus creating a new timestep in the simulator for the next

instant to be computed in that timeline.
7: else
8: // The DI computed by π is already available at @T , some other UPs are late, they will be

instanciated first.

9: end if
10: end for

10

kwd::type("Xi", "Pos2D");

kwd::type("Wgt", "Map1D <Pos2D >=100");

kwd::type("ActT", "Map1D <Scalar >=100");

kwd::type("ActG", "Map1D <Scalar >=100");

"ActT" << fx:: match_triangle("Xi", "Wgt") | kwd::use("r", .3);

"ActG" << fx:: match_gaussian("Xi", "Wgt") | kwd::use("sigma", .3),;

3.3 Merging activities

The average is also the contextual merge. So we have two names for the same operation.

kwd::type("Ac1", "Map1D <Scalar >=100");

kwd::type("Ac2", "Map1D <Scalar >=100");

kwd::type("Ac3", "Map1D <Scalar >=100");

kwd::type("Ac", "Map1D <Scalar >=100");

"Ac" << fx:: average ({"Ac1", "Ac2", "Ac3"});

"Ac" << fx:: context_merge ({"Ac1", "Ac2", "Ac3"});

A specific operation is allowed for merging contextual and external activity.

kwd::type("Ae", "Map1D <Scalar >=100");

kwd::type("Ag", "Map1D <Scalar >=100");

"Ag" << fx:: merge("Ae", "Ac"); | kwd::use("beta", .5),

The formula is

∀i, agi =
√
aei + (1− β)a

c
i

3.4 Learning

Learning concerns the weights wi of a map, once a best matching unit (BMU) π is defined. Learning
consists of moving the weights to the current input ξ, in the surrounding of the best matching unit.
The neighbooring function is µ(i, π), using Gaussian and triangular matchings µG or µ△. The
learning rule is:

∀i, wt+1
i = (1− αh)w

t
i + αhξ, with h = µ(i, π)

kwd::type("Xi", "Pos2D");

kwd::type("BMU", "Pos1D");

kwd::type("Wgt", "Map1D <Pos2D >=100");

"Wgt" << fx:: learn_gaussian("Xi", kwd::prev("Wgt"),

"BMU") | kwd::use("alpha", .05), kwd::use("r", .3);

"Wgt" << fx:: learn_triangle("Xi", kwd::prev("Wgt"),

"BMU") | kwd::use("alpha", .05), kwd::use("sigma", .3);

3.5 BMU computation

A scalar activity distribution over a map serves as a basis for computing the BMU. The basic
operation is the argmax, i.e. the position on the map where the activity is maximal. In case of
ex-aequos, a random choice can be performed (see the ”random-bmu” parameter). The activity
distribution can be convoluated by a gaussian kernel before the argmax computation. The variance
σ of that kernel is expressed in units sich as the map side as a size of 1, whatever the number of
units actually in the map.

kwd::type("Act", "Map1D <Scalar >=100");

kwd::type("BMU_noconv", "Pos1D");

kwd::type("BMU_conv", "Pos1D");

11

"Act" << fx:: random ()

"BMU_noconv" << fx:: argmax("Act") | kwd::use("random -bmu", 1.0);

"BMU_conv" << fx:: conv_argmax("Act") | kwd::use("random -bmu", 0.0),

kwd::use("sigma", .05);

The BMU can also be updated from a previous BMU position, by modifying it toward the argmax
(after convolution) with a step δ. This is used for relaxation processes. The number of convergence
steps can be measured thanks to the ”converge” operator.

kwd::type("Act", "Map1D <Scalar >=100");

kwd::type("BMU", "Pos1D");

kwd::type("NbSteps", "Scalar");

"Act" << fx:: random ()

"BMU" << fx:: toward_conv_argmax("Act",

kwd::prev("BMU")) | kwd::use("sigma", .05),

kwd::use("delta", .05);

"NBSteps" << fx:: converge ({kwd::data("BMU")});

4 Implementation

4.1 Variables

Variables are stored in .var files. They are binary files. When unsigned integers are mentionned
in the following, they are 8-byte unsigned values, starting from most significant bytes first (big
endian). The file is organized as follows, in that order:

• 64 bytes: They contain an ascii version of the type, ended by ’\n’, and complemented with
0 bytes (padding) until the whole description’s length is exactly 64-bytes.

• 8 bytes: An unsigned integer representing the cache size. This is used by the simulator to
determine the size of the cache to be associated to that variable during the simulation.

• 8 bytes: An unsigned integer representing the buffer size s. Indeed, the file stores an history
of the variable, i.e. the values from [T, X, 0] to [T, X, t]. Although this theoretically
represents t+1 values, all of them may not be present in the file. The file is rather a circular
buffer, with a limitted size s. So only values from [T, X, t− s+ 1] to [T, X, t] are stored.
Once determined in the file, the value of the buffer size cannot be changed.

• 8 bytes: The highest time in the file. This is the value t mentionned above. If the file is empty
(i.e. even the the first [T, X, 0] is not stored yet), the 8 bytes are 0xFFFFFFFFFFFFFFFF.

• 8 bytes: The next free position in the file. The file contain a range of s values, but it is a
circular buffer. This bytes tells which index (starting from zero) is the next free position (i.e.
where the [T, X, t+ 1] has to be stored.

• from 0 to at most s × (d+ 1) bytes: This is the data. Each datum is a [T, X, t′] value,
preceeded by a boolean byte. So if d is the number of bytes required for storing a datum, a
slot requires d + 1 bytes. The file buffer contains then from 0 to at most s slots for storing
values. If the boolean byte is 0 in a slot, the datum in that slot is considered as undetermined
yet (i.e. busy). Otherwise, the d bytes following the boolean byte describe the datum value
stored in this slot.

12

	Introduction
	The model
	Data instances (DI)
	Updates
	An update is a function taking arguments and computing a result
	Time steps
	Datation and relaxation
	Update computation cycle

	Timesteps and tasks
	A computational structure for timesteps
	Timestep status
	Timestep update queues
	Providing jobs
	The timestep state machine
	Update patterns

	Simulation

	Available update functions
	Initializations
	Matching a value against weights
	Merging activities
	Learning
	BMU computation

	Implementation
	Variables

