INSTRUCTIONS FOR THE TEST

Contents

1 Getting started 1
1.1 Answering questions e 1
1.2 Warnings L e 1

2 Part 1 : Homemade sets 2

3 Part 2 : Object implementation of homemade sets 2

4 Part 3 : Templates for homemade sets 2

1 Getting started

1.1 Answering questions

On the terminal, typing only
make

helps you. The exam is organized into parts, with an increasing difficulty.

You are given .cpp and .hpp files, where you have to write the code where the comments suggest
to do so.

Compiling what you have done is provided my make, that calls the compiling command for you.
Moreover, it commits the changes into a local git repository, in case of accidental delete... but be
sure not to delete files since you are evaluated from the filling of the files we provide.

When you have answered, for example, question 3 in part 1, you can test as many time as you
need by the command

make partl-question3

Do not type everything, rather use the completion key (the TAB key).

1.2 Warnings

The documentation is available on this machine, you have no access to internet, and no extra
electronic devices are allowed.

DO NOT access collections elements with the [1 operator, like in tab[4], since this is not efficient
within loops.

Each function you will have to implement is short (less than 10 lines). Do not get lost in obfuscated
code !

2 Part 1 : Homemade sets

Read the partl.hpp and partl.cpp files, and then read one by one the parti-questionl.cpp,
partl-question2.cpp, ... files. Each time, for each question, fill the blanks in partl.hpp and
partl.cpp files. You may need to uncomment lines in the partl-questionX.cpp file... follow the
instructions given by the comments. Test each question with the

make partl-questionl
make partl-question2
make partl-question3

commands.

3 Part 2 : Object implementation of homemade sets

The idea of this section is to gather what has been done before into a class. Do not modify partl
files, edit the part2x files. Of course, you can copy-paste from what you have done previously.

So write part2.hpp and part2.cpp files as instructed. You may prefer having all the code in
part2.hpp. In this case, leave part2.cpp as it is. Make the part2-question* test succeed.

4 Part 3 : Templates for homemade sets

Let us extend what we have done in Part 2 to any type that supports the << operator as well as
the == operator. Do not modify part2 files, edit the part3* files. No need for part3.cpp here.

The file part3.hpp, needed to compile the part3-question*.cpp tests, is empty. Copy-paste the
class definition you have done in part2.hpp, and make it be a template.

	Getting started
	Answering questions
	Warnings

	Part 1 : Homemade sets
	Part 2 : Object implementation of homemade sets
	Part 3 : Templates for homemade sets

